Unmanned Surface Vehicle for Spent Nuclear Fuel Inspection

Nuclear robot and diagnosis team Jongwon Park

Spent nuclear fuel

Spent Nuclear Fuel Nuclear Fuel Nuclear Assembly Reactor Fuel Fuel Rods Rod Uranium Coolant Fuel **Fuel Pellets** Rod' Uranium Fuel Pellet

- Bundles of uranium pellets encased in metal rods that have been used
- produces a lot of radiation and heat
- must be managed to protect workers, the environment and the public

https://www.nrc.gov/reading-rm/doc-collections/fact-sheets/storage-spent-fuel.html

Spent fuel pool

2 After 5-6 years, spent fuel assemblies—typically 14 feet (4.3 meters) long and containing nearly 200 fuel rods for PWRs and 80-100 fuel rods for BWRs—are removed from the reactor and allowed to cool in storage pools for a few years. At this point, the 900-pound (409-kilogram) assemblies contain only about one-fifth the original amount of uranium-235.

- Size
 - Pool depth: 12 m
 - Fuel height: 4.3 m
- Are inside the plant's protected area.
- water to cool the fuel and provide radiation shielding
- Have no drains
- Have large safety margins: 20 feet of water above the fuel
- Robust: very thick, steel-reinforced concrete walls and stainless steel liners.
- May be located below ground level, shielded by other structures, or surrounded by walls that would protect the pool from a plane crash or other impact.

https://www.nrc.gov/reading-rm/doc-collections/fact-sheets/storage-spent-fuel.html

Current spent fuel inspection

ICVD in a configuration with 250mm lens and an example of digital back

- Inspectors on the bridge
- handheld optical instrument, Improved Cerenkov Viewing Device (ICVD)
- to confirm the presence of spent fuel stored underwater (Yes/no)
- Check the strength of the Cherenkov light
- Random inspection
- Very slow process
- Hand writing, no image/video recording
- 1 time in a year

Illustration of what the ICVD would record through the underwater observation window

IAEA safeguards

IAEA

• IAEA is to deter the proliferation of nuclear weapons

Department of Safeguards

 The Department of Safeguards carries out the IAEA's duties and responsibilities as the world's nuclear inspectorate, supporting global efforts to stop the spread of nuclear weapons

Division of Technical and Scientific Services

 The Division provides scientific and technical support to the Divisions of Operations. This includes the design, development, testing, calibration, installation and maintenance of safeguards equipment; performance and contamination monitoring of equipment; and inspection logistics.

IAEA Robotics Challenge

What do we want to improve?

- IAEA inspectors involve making repetitive measurements in areas that can be difficult to access, or with elevated radiation levels.
- This is a domain where robotic could play a role,
 - improve the working conditions of the inspectors
 - enhance the consistency of the IAEA measurements

Unmanned Surface Vehicle (USV)

 The IAEA would like to mount ICVD inside a small robotized floating platform, which would autonomously propel itself across the surface of the pond, while stabilizing the ICVD in a vertical position.

Challenge Roadmap

Submission of Deliverables

- Participants' technical proposals
- Technical Evaluation 1

Demonstration Week

- 1 week of real-life tests in Australia
- Technical Evaluation 2

Proof-of-concept

- Field deployment by IAEA inspectors
- Technical Evaluation 3

Procurement

- IAEA Request for Proposal
- Financial Evaluation
- Contract Award to selected participants

USV requirements

- S1 : always remains buoyant, no part fall and the camera remains protected from water.
- S2 : camera remains stable and vertical
 - images are sharp at 1/10s exposure taken with a 250mm lens
 - ✤ account small waves
- S3 : carried in a plane, prepared by a single user.
- S4 : easily cleaned up and any trace of contaminated water
 - prevent the propelling system from spraying any potentially contaminated water
- S5 : autonomously guide within a few centimeters accuracy, and propel itself without any user input.
 - ✤ No external guiding infrastructure is allowed.
 - system for moderate circulation streams generated by water pumps.
 - follow straight lines, systematically scanning the fuel assemblies.

SCV (Spent fuel Check Vehicle)

ICVD mock-up Motor + propeller

- Four buoyant materials are located at the top
- ICVD mount and cylinder are located in front of the USV
- The microcontroller is inside the upper cylinder
- USV is completely waterproof
- 11.1 kg , can be easily handled by one person
- Four propellers for maneuvering the

USV forward/backward, left/right and CW/CCW rotations

- Onboard camera for recognizing surrounding environment and spent fuel assemblies
- Power supply: lithium polymer battery, 14.8 V, 18000mAh
- Endurance: 5 hours
- Speed: 20 cm/sec
- Range: 50 meters (can be extended)

Control environment

Control environment

- USV can be fully controlled by a laptop computer
- The control laptop and USV are connected by wired communication through 50 meter cable
- The system does not use wireless communication or equipment, therefore it can operate stably in the spent fuel pond environment.

Control program

The main control program consists of three subprograms (image processing program, position control program and navigation/inspection program)

- Image processing program
- Position control program
- Navigation/inspection program

Control UI

Implementation

- S1 : always remains buoyant, no part fall and the camera remains protected from water.
- S2 : camera remains stable and vertical
 - images are sharp at 1/10s exposure taken with a 250mm lens
 - ✤ account small waves

Implementation

- S3 : carried in a plane, prepared by a single user.
- S4 : easily cleaned up and any trace of contaminated water
 - prevent the propelling system from spraying any potentially contaminated water

Implementation

S5 : autonomously guide within a few centimeters accuracy, and propel itself without any user input.

- ✤ No external guiding infrastructure is allowed.
- system for moderate circulation streams generated by water pumps.
- ✤ follow straight lines, systematically scanning the fuel assemblies.

Experiment protocol

Experiment pool

- Due to safety and security concerns, all experiments take place in a safe environment without any radiation and without any risk of radioactive contamination.
- indoor swimming pool: 8.6 m x 3.8 m x 1.2 m
- Pool walls: 15-20 cm above the water level
- Fuel assembly:
 - Square: 20 cm x 20 cm
 - Hexagonal: 12 cm in diameter

FA types used in the experiments

ICVD(Improved Cerenkov Viewing Device) dummy

Experiment 1 Objective

- Square fuel
- Inspect all FAs in 20 min.

The assessment criteria

- Cover all of the FAs
- Trajectory is aligned with the FA pattern
- Motion and speed remains under control
- Video: clear (stable, not blur) frames featuring all FAs

Experiment 2 Objective

- Hex fuel
- Inspect all FAs in 20 min.

The assessment criteria

- Cover all of the FAs
- Trajectory is aligned with the FA pattern
- Motion and speed remains under control
- Video: clear (stable, not blur) frames featuring all FAs

Experiment 3

Objective

- Hex fuel
- Inspect random selection of 3 FAs in 10 min.
- Hovering over each FA for 1 min.
- Target FAs are located in difficult to access parts of the pond

The assessment criteria

- Optimal trajectory and speed of the USV
- 1 minute-long stable videos featuring specified FA

Contamination clean-up

Material safety

Robot redesign

- Frame: stronger, simpler
- Aluminum, stainless steel material
- Smaller, lighter
- Less bots, parts
- Hooks for load/unload
- Easy decontamination

Training (11/13)

- General understating of the robot
- SCV robot assemble training
- Control software training

Training @ IAEA

Training @ Vienna Model Basin Ltd

Training (11/13)

Robot deploy training

Datastart, Hungary

Univ. of Manchester, UK

SCV, KAERI

Proof-of-concept in Finland

- Loviisa Nuclear power plant
- 18.11.19~30 (2 weeks)
- IAEA inspectors:
 - Dimitri Finker
 - Andrey Sokolov
- Test robots
 - Datastart, Hungary
 - Univ. of Manchester, UK
 - SCV, KAERI
- Test Schedule
 - 11.19~23: KAERI, Hungary
 - 11.26~30: KAERI, Hungary, Univ. of Manchester

